Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
Chinese Journal of Biotechnology ; (12): 1525-1547, 2023.
Article in Chinese | WPRIM | ID: wpr-981152

ABSTRACT

Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Protein Serine-Threonine Kinases , Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cyclin-Dependent Kinase 2
2.
Frontiers of Medicine ; (4): 317-329, 2023.
Article in English | WPRIM | ID: wpr-982568

ABSTRACT

Long noncoding RNAs (lncRNAs) play a critical role in the regulation of atherosclerosis. Here, we investigated the role of the lncRNA growth arrest-specific 5 (lncR-GAS5) in atherogenesis. We found that the enforced expression of lncR-GAS5 contributed to the development of atherosclerosis, which presented as increased plaque size and reduced collagen content. Moreover, impaired autophagy was observed, as shown by a decreased LC3II/LC3I protein ratio and an elevated P62 level in lncR-GAS5-overexpressing human aortic endothelial cells. By contrast, lncR-GAS5 knockdown promoted autophagy. Moreover, serine/arginine-rich splicing factor 10 (SRSF10) knockdown increased the LC3II/LC3I ratio and decreased the P62 level, thus enhancing the formation of autophagic vacuoles, autolysosomes, and autophagosomes. Mechanistically, lncR-GAS5 regulated the downstream splicing factor SRSF10 to impair autophagy in the endothelium, which was reversed by the knockdown of SRSF10. Further results revealed that overexpression of the lncR-GAS5-targeted gene miR-193-5p promoted autophagy and autophagic vacuole accumulation by repressing its direct target gene, SRSF10. Notably, miR-193-5p overexpression decreased plaque size and increased collagen content. Altogether, these findings demonstrate that lncR-GAS5 partially contributes to atherogenesis and plaque instability by impairing endothelial autophagy. In conclusion, lncR-GAS5 overexpression arrested endothelial autophagy through the miR-193-5p/SRSF10 signaling pathway. Thus, miR-193-5p/SRSF10 may serve as a novel treatment target for atherosclerosis.


Subject(s)
Humans , Atherosclerosis/genetics , Autophagy/genetics , Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , MicroRNAs/metabolism , Repressor Proteins/metabolism , RNA Splicing Factors , Serine-Arginine Splicing Factors/genetics , RNA, Long Noncoding/metabolism
3.
Protein & Cell ; (12): 202-216, 2023.
Article in English | WPRIM | ID: wpr-982531

ABSTRACT

Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.


Subject(s)
Humans , Mesenchymal Stem Cells/physiology , Cellular Senescence , Homeostasis , Cell Cycle Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Mitochondria/metabolism , Electron Transport Complex III/metabolism , Cells, Cultured
4.
Chinese Journal of Lung Cancer ; (12): 310-318, 2023.
Article in Chinese | WPRIM | ID: wpr-982161

ABSTRACT

Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.


Subject(s)
Humans , Cell Cycle Proteins/metabolism , Spindle Apparatus/metabolism , Protein Serine-Threonine Kinases/metabolism , M Phase Cell Cycle Checkpoints/genetics , Lung Neoplasms/metabolism
5.
Asian Journal of Andrology ; (6): 398-403, 2023.
Article in English | WPRIM | ID: wpr-981948

ABSTRACT

Teratozoospermia is a rare disease associated with male infertility. Several recurrent genetic mutations have been reported to be associated with abnormal sperm morphology, but the genetic basis of tapered-head sperm is not well understood. In this study, whole-exome sequencing (WES) identified a homozygous WD repeat domain 12 (WDR12; p.Ser162Ala/c.484T>G) variant in an infertile patient with tapered-head spermatozoa from a consanguineous Chinese family. Bioinformatic analysis predicted this mutation to be a pathogenic variant. To verify the effect of this variant, we analyzed WDR12 protein expression in spermatozoa of the patient and a control individual, as well as in the 293T cell line, by Western blot analysis, and found that WDR12 expression was significantly downregulated. To understand the role of normal WDR12, we evaluated its mRNA and protein expression in mice at different ages. We observed that WDR12 expression was increased in pachytene spermatocytes, with intense staining visible in round spermatid nuclei. Based on these results, the data suggest that the rare biallelic pathogenic missense variant (p.Ser162Ala/c.484T>G) in the WDR12 gene is associated with tapered-head spermatozoa. In addition, after intracytoplasmic sperm injection (ICSI), a successful pregnancy was achieved. This finding indicates that infertility associated with this WDR12 homozygous mutation can be overcome by ICSI. The present results may provide novel insights into understanding the molecular mechanisms of male infertility.


Subject(s)
Humans , Pregnancy , Female , Male , Animals , Mice , Teratozoospermia/pathology , Semen/metabolism , Infertility, Male/metabolism , Spermatozoa/metabolism , Mutation , RNA-Binding Proteins/metabolism , Cell Cycle Proteins/genetics
6.
Chinese Journal of Medical Genetics ; (6): 568-571, 2023.
Article in Chinese | WPRIM | ID: wpr-981790

ABSTRACT

OBJECTIVE@#To explore the prenatal ultrasonographic features and genetic basis for an abortus suspected for type II Cornelia de Lange syndrome (CdLS2).@*METHODS@#A fetus diagnosed with CdLS2 at the Shengjing Hospital Affiliated to China Medical University on September 3, 2019 was selected as the study subject. Clinical data of the fetus and family history was collected. Following induced labor, whole exome sequencing was carried out on the abortus. Candidate variant was verified by Sanger sequencing and bioinformatic analysis.@*RESULTS@#Prenatal ultrasonography (33 weeks of pregnancy) has revealed multiple anomalies in the fetus, which included slightly widened cavity of septum pellucidum, blurred corpus callosum, slightly reduced frontal lobe volume, thin cortex, fusion of lateral ventricles, polyhydramnios, small stomach bubble, and digestive tract atresia. Whole exome sequencing has revealed a heterozygous c.2076delA (p.Lys692Asnfs*27) frameshifting variant in the SMC1A gene, which was found in neither parent and was rated as pathogenic based on the guidelines of American College of Medical Genetics and Genomics (ACMG).@*CONCLUSION@#The CdLS2 in this fetus may be attributed to the c.2076delA variant of the SMC1A gene. Above finding has provided a basis for genetic counseling and assessment of reproductive risk for this family.


Subject(s)
Pregnancy , Female , Humans , Cell Cycle Proteins/genetics , De Lange Syndrome/diagnosis , Phenotype , Ultrasonography, Prenatal , Fetus/diagnostic imaging , Mutation
7.
China Journal of Chinese Materia Medica ; (24): 3014-3021, 2023.
Article in Chinese | WPRIM | ID: wpr-981431

ABSTRACT

Recent studies have shown that the occurrence and development of common liver diseases, including non-alcoholic fatty liver disease, cirrhosis, and liver cancer, are related to liver aging(LA). Therefore, to explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a traditional classic prescription in improving LA with multiple targets, the present study randomly divided 24 rats into a normal group, a model group, a DHZCP group, and a vitamin E(VE) group, with six rats in each group. The LA model was induced by continuous intraperitoneal injection of D-galactose(D-gal) in rats. For the LA model rats, the general situation was evaluated by aging phenotype and body weight(BW). LA was assessed by the pathological characteristics of hepatocyte senescence, hepatic function indexes, the staining characteristics of phosphorylated histone family 2A variant(γ-H2AX), and the expression levels of cell cycle arrest proteins(P21, P53, P16) and senescence-associated secretory phenotype(SASP) in the liver. The activation of the reactive oxygen species(ROS)-mediated phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)/forkhead box protein O4(FoxO4) signaling pathway was estimated by hepatic ROS expression feature and the protein expression levels of the key signaling molecules in the PI3K/Akt/FoxO4 signaling pathway. The results showed that after the treatment with DHZCP or VE for 12 weeks, for the DHZCP and VE groups, the characterized aging phenotype, BW, pathological characteristics of hepatocyte senescence, hepatic function indexes, relative expression of ROS in the liver, protein expression levels of key signaling molecules including p-PI3K, p-Akt, and FoxO4 in the liver, staining characteristics of γ-H2AX, and the protein expression levels of P16, P21, P53, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in the liver were improved, and the effects of DHZCP and VE were similar. Based on the D-gal-induced LA model in rats, this study demonstrates that DHZCP can ameliorate LA with multiple targets in vivo, and its effects and mechanism are related to regulating the activation of the ROS-mediated PI3K/Akt/FoxO4 signaling pathway in the liver. These findings are expected to provide new pharmacological evidence for the treatment of DHZCP in aging-related liver diseases.


Subject(s)
Animals , Rats , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Reactive Oxygen Species , Tumor Suppressor Protein p53/genetics , Signal Transduction , Liver , Aging , Cell Cycle Proteins , Interleukin-6
8.
Journal of Experimental Hematology ; (6): 81-88, 2023.
Article in Chinese | WPRIM | ID: wpr-971106

ABSTRACT

OBJECTIVE@#To investigate the effects of mTOR inhibitors everolimus (EVE) and gemcitabine (GEM) on the proliferation, apoptosis and cell cycle of diffuse large B-cell lymphoma (DLBCL) cell line U2932, and further explore the molecular mechanisms, so as to provide new ideas and experimental basis for the clinical treatment of DLBCL.@*METHODS@#The effect of EVE and GEM on the proliferation of U2932 cells was detected by CCK-8 assay, the IC50 of the two drugs was calculated, and the combination index (CI=) of the two drugs was calculated by CompuSyn software. The effect of EVE and GEM on apoptosis of U2932 cells was detected by flow cytometry with AnnexinV-FITC/PI staining. Flow cytometry with propidium iodide (PI) staining was used to detect the effect of EVE and GEM on the cell cycle of U2932 cells. Western blot assay was used to detect the effects of EVE and GEM on the channel proteins p-mTOR and p-4EBP1, the anti-apoptotic proteins MCL-1 and Survivin, and the cell cycle protein Cyclin D1.@*RESULTS@#Both EVE and GEM could significantly inhitbit the proliferation of U2932 cells in a time- and dose-dependent manner (r=0.465, 0.848; 0.555, 0.796). According to the calculation of CompuSyn software, EVE combined with GEM inhibited the proliferation of U2932 cells at 24, 48 and 72 h with CI=<1, which had a synergistic effect. After treated U2932 cells with 10 nmol/L EVE, 250 nmol/L GEM alone and in combination for 48 h, both EVE and GEM induced apoptosis, and the difference was statistically significant compared with the control group (P<0.05). The apoptosis rate was significantly enhanced after EVE in combination with GEM compared with single-agent (P<0.05). Both EVE and GEM alone and in combination significantly increased the proportion of cells in G1 phase compared with the control group (P<0.05). The proportion of cells in G1 phase was significantly increased when the two drugs were combined (P<0.05). The expression of p-mTOR and effector protein p-4EBP1 was significantly downregulated in the EVE combined with GEM group, the expression of anti-apoptotic proteins MCL-1, Survivin and cell cycle protein cyclin D1 was downregulated too (P<0.05).@*CONCLUSION@#EVE combined with GEM can synergistically inhibit the proliferation of U2932 cells, and the mechanism may be that they can synergistically induce apoptosis by downregulating the expression of MCL-1 and Survivin proteins and block the cell cycle progression by downregulating the expression of Cyclin D1.


Subject(s)
Humans , Gemcitabine , Everolimus/pharmacology , Survivin/pharmacology , Cyclin D1/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein , Cell Line, Tumor , Cell Proliferation , TOR Serine-Threonine Kinases , Apoptosis , Apoptosis Regulatory Proteins , Cell Cycle Proteins , Lymphoma, Large B-Cell, Diffuse
9.
Journal of Experimental Hematology ; (6): 17-24, 2023.
Article in Chinese | WPRIM | ID: wpr-971096

ABSTRACT

OBJECTIVE@#To analyze the gene mutation profile in children with acute lymphocyte leukemia (ALL) and to explore its prognostic significance.@*METHODS@#Clinical data of 249 primary pediatric ALL patients diagnosed and treated in the Department of Hematological Oncology of Wuhan Children's Hospital from January 2018 to December 2021 were analyzed retrospectively. Next-generation sequencing (NGS) was used to obtain gene mutation data and analyze the correlation between it and the prognosis of children with ALL.@*RESULTS@#227 (91.2%) were B-ALL, 22 (8.8%) were T-ALL among the 249 cases, and 178 (71.5%) were found to have gene mutations, of which 85 (34.1%) had ≥3 gene mutations. NRAS(23.7%), KRAS (22.9%),FLT3(11.2%), PTPN11(8.8%), CREBBP (7.2%), NOTCH1(6.4%) were the most frequently mutated genes, the mutations of KRAS, FLT3, PTPN11, CREBBP were mainly found in B-ALL, the mutations of NOTCH1 and FBXW7 were mainly found in T-ALL. The gene mutation incidence of T-ALL was significantly higher than that of B-ALL (χ2= 5.573,P<0.05) and were more likely to have co-mutations (P<0.05). The predicted 4-year EFS rate (47.9% vs 88.5%, P<0.001) and OS rate (53.8% vs 94.1%, P<0.001) in children with tp53 mutations were significantly lower than those of patients without tp53 mutations. Patients with NOTCH1 mutations had higher initial white blood cell count (128.64×109/L vs 8.23×109/L,P<0.001), and children with NOTCH1 mutations had a lower 4-year EFS rate than those of without mutations (71.5% vs 87.2%, P=0.037).@*CONCLUSION@#Genetic mutations are prevalent in childhood ALL and mutations in tp53 and NOTCH1 are strong predictors of adverse outcomes in childhood ALL, with NGS contributing to the discovery of genetic mutations and timely adjustment of treatment regimens.


Subject(s)
Child , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Cycle Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies , Ubiquitin-Protein Ligases/genetics , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Mutation , Lymphocytes
10.
Chinese Journal of Medical Genetics ; (6): 7-11, 2023.
Article in Chinese | WPRIM | ID: wpr-970868

ABSTRACT

OBJECTIVE@#To analyze the clinical phenotype and results of genetic testing in three children with Cornelia de Lange syndrome (CdLS).@*METHODS@#Clinical data of the children and their parents were collected. Peripheral blood samples of the pedigrees were collected for next generation sequencing analysis.@*RESULTS@#The main clinical manifestations of the three children have included growth delay, mental retardation, peculiar facies and other accompanying symptoms. Based on the criteria proposed by the International Diagnostic Consensus, all three children were suspected for CdLS. As revealed by whole exome sequencing, child 1 has harbored NIPBL gene c.5567_5569delGAA insTAT missense variant, child 2 has harbored SMC1A gene c.607A>G missense variant, and child 3 has harbored HDAC8 gene c.628+1G>A splicing variant. All of the variants were de novo in origin.@*CONCLUSION@#All of the children were diagnosed with CdLS due to pathogenic variants of the associated genes, among which the variants of NIPBL and HDAC8 genes were unreported previously. Above finding has enriched the spectrum of pathogenic variants underlying CdLS.


Subject(s)
Humans , Cell Cycle Proteins/genetics , De Lange Syndrome/diagnosis , Genotype , Phenotype , Genetic Testing , Histone Deacetylases/genetics , Repressor Proteins/genetics
11.
Chinese Journal of Biotechnology ; (12): 132-148, 2023.
Article in Chinese | WPRIM | ID: wpr-970364

ABSTRACT

The bromodomain and extraterminal domain (Bet) family are the regulators of the epigenome and also the pivotal driving factors for the expression of tumor related genes that tumor cells depend on for survival and proliferation. Bromodomain-containing protein 4 (Brd4) is a member of the Bet protein family. Generally, Brd4 identifies acetylated histones and binds to the promoter or enhancer region of target genes to initiate and maintain expression of tumor related genes. Brd4 is closely related to the regulation of multiple transcription factors and chromatin modification and is involved in DNA damage repair and maintenance of telomere function, thus maintaining the survival of tumor cells. This review summarizes the structure and function of Brd4 protein and the application of its inhibitors in tumor research.


Subject(s)
Humans , Transcription Factors/metabolism , Nuclear Proteins/metabolism , Histones , Cell Cycle Proteins/metabolism , Neoplasms/metabolism , Protein Domains
12.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 36-46, 2023.
Article in English | WPRIM | ID: wpr-971662

ABSTRACT

Bavachin is a dihydroflavonoid compound isolated from Psoralea corylifolia, and exhibits anti-bacterial, anti-inflammatory, anti-tumor and lipid-lowering activities. Recent attention has gradually drawn on bavachin-induced apoptosis in many human cancer cell lines. However, the anti-cancer effects and related mechanisms in colorectal cancer remain unknown. Here, we investigated the effects of bavachin on colorectal cancer in vivo and in vitro. The results showed that bavachin inhibited the proliferation of human colorectal cancer cells and induce apoptosis. These changes were mediated by activating the MAPK signaling pathway, which significantly up-regulated the expression of Gadd45a. Furthermore, Gadd45a silencing obviously attenuated bavachin-mediated cell apoptosis. Inhibition of the MAPK signaling pathway by JNK/ERK/p38 inhibitors also weakened the up-regulation of Gadd45a by bavachin. The anticancer effect of bavachin was also validated using a mouse xenograft model of human colorectal cancer. In conclusion, these findings suggest that bavachin induces the apoptosis of colorectal cancer cells through activating the MAPK signaling pathway.


Subject(s)
Humans , Signal Transduction , Flavonoids/pharmacology , Proteins/pharmacology , MAP Kinase Signaling System , Colorectal Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Cycle Proteins/pharmacology
13.
Protein & Cell ; (12): 51-63, 2023.
Article in English | WPRIM | ID: wpr-971605

ABSTRACT

RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In Rbm46 knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.


Subject(s)
Animals , Mice , 3' Untranslated Regions/genetics , Cell Cycle Proteins/metabolism , Gametogenesis/genetics , Meiosis/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics
14.
Asian Journal of Andrology ; (6): 186-190, 2022.
Article in English | WPRIM | ID: wpr-928536

ABSTRACT

Nonobstructive azoospermia (NOA) is a common cause of infertility and is defined as the complete absence of sperm in ejaculation due to defective spermatogenesis. The aim of this study was to identify the genetic etiology of NOA in an infertile male from a Chinese consanguineous family. A homozygous missense variant of the membrane-bound O-acyltransferase domain-containing 1 (MBOAT1) gene (c.770C>T, p.Thr257Met) was found by whole-exome sequencing (WES). Bioinformatic analysis also showed that this variant was a pathogenic variant and that the amino acid residue in MBOAT1 was highly conserved in mammals. Quantitative polymerase chain reaction (Q-PCR) analysis showed that the mRNA level of MBOAT1 in the patient was 22.0% lower than that in his father. Furthermore, we screened variants of MBOAT1 in a broader population and found an additional homozygous variant of the MBOAT1 gene in 123 infertile men. Our data identified homozygous variants of the MBOAT1 gene associated with male infertility. This study will provide new insights for researchers to understand the molecular mechanisms of male infertility and will help clinicians make accurate diagnoses.


Subject(s)
Animals , Humans , Male , Acetyltransferases/genetics , Azoospermia/genetics , Cell Cycle Proteins/genetics , Infertility, Male/genetics , Mammals , Membrane Proteins/genetics , Mutation
15.
Chinese Journal of Medical Genetics ; (6): 417-420, 2022.
Article in Chinese | WPRIM | ID: wpr-928432

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a child with myopathy and cerebellar atrophy with ataxia.@*METHODS@#Clinical examinations and laboratory testing were carried out for the patient. The proband and the parents' genomic DNA was extracted from peripheral blood samples and subjected to trio whole-exome sequencing. Candidate variant was validated by Sanger sequencing.@*RESULTS@#The 1-year-and-8-month-old boy manifested motor developmental delay, ataxia, hypomyotonia, increased serum creatine kinase. Cranial MRI showed cerebellar atrophy with progressive aggravation. Genetic testing revealed that the patient has harbored compound heterozygous variants of the MSTO1 gene, namely c.13delG (p.Ala5ProfsTer68) and c.971C>T (p.Thr324Ile), which were respectively inherited from his mother and father. The former was unreported previously and was predicted to be likely pathogenic, whilst the latter has been reported previously and was predicted to be of uncertain significance.@*CONCLUSION@#The compound heterozygous c.13delG (p.Ala5ProfsTer68) and c.971C>T (p.Thr324Ile) variants probably underlay the disease in the proband. Above finding has enriched the spectrum of MSTO1 gene variants underlying mitochondrial myopathy and cerebellar atrophy with ataxia.


Subject(s)
Child , Humans , Infant , Male , Ataxia/genetics , Atrophy/genetics , Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Mitochondrial Myopathies , Mutation , Neurodegenerative Diseases , Exome Sequencing
16.
Chinese Journal of Medical Genetics ; (6): 26-30, 2022.
Article in Chinese | WPRIM | ID: wpr-928354

ABSTRACT

OBJECTIVE@#To analyze the clinical characteristics and pathogenic gene in a Chinese pedigree affected with mitochondrial DNA depletion syndrome 8A (MTDPS8A).@*METHODS@#Whole exome sequencing was carried out for the patient. Sanger sequencing was used to verify the results, and PolyPhen-2 and PROVEAN software were used to predict the impact of amino acid changes on the function of the protein.@*RESULTS@#The patient, a two-month-old female, was admitted to the hospital for poor milk intake and poor mental response. Her clinical manifestations included feeding difficulty, shortness of breath and low muscle tone. Auxiliary laboratory test indicated that the infant was underdeveloped with abnormal liver, kidney, and heart functions accompanied by hyperlacticacidemia. She responded poorly to treatment and eventually died. Sequencing revealed that the child has carried compound heterozygous missense variants of the RRM2B gene, namely c.16delA (p.R6Gfs*22) and c.175G>C (p.A59P), which were respectively inherited from her father and mother, and both were newly discovered pathologic variants.@*CONCLUSION@#The c.16delA and c.175G>C compound heterozygous variants of the RRM2B gene probably underlay the pathogenesis of MTDPS8A. Above finding has strengthened the understanding of the clinical feature and genetic etiology of this disease and expanded the mutation spectrum of the RRM2B gene.


Subject(s)
Child , Female , Humans , Infant , Cell Cycle Proteins , China , DNA, Mitochondrial/genetics , Genetic Testing , Mutation , Pedigree , Ribonucleotide Reductases , Exome Sequencing
17.
China Journal of Orthopaedics and Traumatology ; (12): 276-280, 2022.
Article in Chinese | WPRIM | ID: wpr-928308

ABSTRACT

OBJECTIVE@#Osteosarcoma(OS) and Ewing's sarcoma (EWS) are the two most common primary malignant bone tumors in children. The aim of the study was to identify key genes in OS and EWS and investigate their potential pathways.@*METHODS@#Expression profiling (GSE16088 and GSE45544) were obtained from GEO DataSets. Differentially expressed genes were identified using GEO2R and key genes involved in the occurrence of both OS and EWS were selected using venn diagram. Gene ontology and pathway enrichment analyses were performed for the ensembl. Protein-protein interaction (PPI) networks were established by STRING. Further, UCSC was used to predict the transcription factors of the cell division cycke 5-like(CDC5L) gene, and GEPIA was used to analyze the correlation between the transcription factors and the CDC5L gene.@*RESULTS@#The results showed that CDC5L gene was the key gene involved in the pathogenesis of OS and EWS. The gene is mainly involved in mitosis, and is related to RNA metabolism, processing of capped intron-containing pre-mRNA, mRNA and pre-mRNA splicing.@*CONCLUSION@#CDC5L, as a key gene, plays a role in development of OS and EWS, which may be reliable targets for diagnosis and treatment of these primary malignant tumors.


Subject(s)
Child , Humans , Bone Neoplasms/pathology , Cell Cycle Proteins/genetics , Computational Biology , Gene Expression Profiling , Osteosarcoma/genetics , RNA-Binding Proteins/genetics , Sarcoma, Ewing/genetics
18.
Acta Academiae Medicinae Sinicae ; (6): 142-148, 2022.
Article in Chinese | WPRIM | ID: wpr-927858

ABSTRACT

Aurora kinase A (AURKA),a family member of aurora kinases,is involved in mitotic entry,maturation and separation of centrosome,assembly and stabilization of bipolar spindle,and condensation and separation of chromosome.Studies have demonstrated that AURKA plays a similar role in meiosis,while the specific mechanism and the similarities and differences in its role between meiosis and mitosis remain unclear.Therefore,we reviewed the studies about the localization and activation of AURKA in oocyte meiosis,and compared the role of AURKA in regulating spindle formation,activating spindle assembly checkpoint,and correcting the kinetochore-microtubule attachment between the meiosis of oocytes and the mitosis of somatic cells.This review will lay a theoretical foundation for revealing the mechanism of AURKA in the regulation of cell division and for the clinical research related to cancer and reproduction.


Subject(s)
Humans , Aurora Kinase A/genetics , Cell Cycle Proteins/genetics , Chromosome Segregation , Meiosis , Oocytes
19.
Arq. bras. cardiol ; 116(5): 970-978, nov. 2021. tab, graf
Article in English, Portuguese | LILACS | ID: biblio-1248893

ABSTRACT

Resumo Fundamento: A vitamina D (VD) tem um importante papel na função cardíaca. No entanto, a vitamina exerce uma curva "dose-resposta" bifásica na fisiopatologia cardiovascular e pode causar efeitos deletérios, mesmo em doses não tóxicas. A VD exerce suas funções celulares ligando-se ao seu receptor. Ainda, a expressão da proteína de interação com a tiorredoxina (TXNIP) é positivamente regulada pela VD. A TXNIP modula diferentes visa de sinalização celular que podem ser importantes para a remodelação cardíaca. Objetivos: Avaliar se a suplementação com VD leva à remodelação cardíaca, e se a TXNIP e a tiorredoxina (Trx) estão associadas com esse processo. Métodos: Duzentos e cinquenta ratos Wistar machos foram alocados em três grupos: controle (C, n=21), sem suplementação com VD; VD3 (n = 22) e VD10 (n=21), suplementados com 3,000 e 10,000 UI de VD/ kg de ração, respectivamente, por dois meses. Os grupos foram comparados por análise de variância (ANOVA) com um fator e teste post hoc de Holm-Sidak (variáveis com distribuição normal), ou pelo teste de Kruskal-Wallis e análise post-hoc de Dunn. O nível de significância para todos os testes foi de 5%. Resultados: A expressão de TXNIP foi mais alta e a atividade do Trx foi mais baixa no grupo VD10. Os animais que receberam suplementação com VD apresentaram aumento de hidroperóxido lipídico e diminuição de superóxido dismutase e glutationa peroxidase. A proteína Bcl-2 foi mais baixa no grupo VD10. Observou-se uma diminuição na β-oxidação de ácidos graxos, no ciclo do ácido tricarboxílico, na cadeia transportadora de elétrons, e um aumento na via glicolítica. Conclusão: A suplementação com VD levou à remodelação cardíaca e esse processo pode ser modulado por TXNIP e Trx, e consequentemente por estresse oxidativo.


Abstract Background: Vitamin D (VD) has been shown to play an important role in cardiac function. However, this vitamin exerts a biphasic "dose response" curve in cardiovascular pathophysiology and may cause deleterious effects, even in non-toxic doses. VD exerts its cellular functions by binding to VD receptor. Additionally, it was identified that the thioredoxin-interacting protein (TXNIP) expression is positively regulated by VD. TXNIP modulate different cell signaling pathways that may be important for cardiac remodeling. Objective: To evaluate whether VD supplementation lead to cardiac remodeling and if TXNIP and thioredoxin (Trx) proteins are associated with the process. Methods: A total of 250 Male Wistar rats were allocated into three groups: control (C, n=21), with no VD supplementation; VD3 (n = 22) and VD10 (n=21), supplemented with 3,000 and 10,000 IU of VD/ kg of chow respectively, for two months. The groups were compared by one-way analysis of variance (ANOVA) and Holm-Sidak post hoc analysis, (variables with normal distribution), or by Kruskal-Wallis test and Dunn's test post hoc analysis. The significance level for all tests was 5%. Results: TXNIP protein expression was higher and Trx activity was lower in VD10. The animals supplemented with VD showed increased lipid hydroperoxide and decreased superoxide dismutase and glutathione peroxidase. The protein Bcl-2 was lower in VD10. There was a decrease in fatty acid β-oxidation, tricarboxylic acid cycle and electron transport chain with shift to increase in glycolytic pathway. Conclusion: VD supplementation led to cardiac remodeling and this process may be modulated by TXNIP and Trx proteins and consequently oxidative stress.


Subject(s)
Animals , Male , Rats , Thioredoxins/metabolism , Ventricular Remodeling , Vitamin D , Rats, Wistar , Oxidative Stress , Cell Cycle Proteins , Dietary Supplements
20.
Braz. dent. j ; 32(4): 74-82, July-Aug. 2021. tab, graf
Article in English | LILACS, BBO | ID: biblio-1345513

ABSTRACT

Abstract The Inhibitor of Growth (ING) gene family is a group of tumor suppressor genes that play important roles in cell cycle control, senescence, DNA repair, cell proliferation, and apoptosis. However, inactivation and downregulation of these proteins have been related in some neoplasms. The present study aimed to evaluate the immunohistochemical profiles of ING3 and ING4 proteins in a series of benign epithelial odontogenic lesions. Methods: The sample comprised of 20 odontogenic keratocysts (OKC), 20 ameloblastomas (AM), and 15 adenomatoid odontogenic tumors (AOT) specimens. Nuclear and cytoplasmic immunolabeling of ING3 and ING4 were semi-quantitatively evaluated in epithelial cells of the odontogenic lesions, according to the percentage of immunolabelled cells in each case. Descriptive and statistics analysis were computed, and the p-value was set at 0.05. Results: No statistically significant differences were found in cytoplasmic and nuclear ING3 immunolabeling among the studied lesions. In contrast, AOTs presented higher cytoplasmic and nuclear ING4 labeling compared to AMs (cytoplasmic p-value = 0.01; nuclear p-value < 0.001) and OKCs (nuclear p-value = 0.007). Conclusion: ING3 and ING4 protein downregulation may play an important role in the initiation and progression of more aggressive odontogenic lesions, such as AMs and OKCs.


Resumo Objetivos: A família dos Genes Inibidores de Crescimento (ING) é um grupo de genes supressores tumorais que desempenham papéis importantes no controle do ciclo celular, na senescência, no reparo do DNA, na proliferação celular e na apoptose. No entanto, a inativação e a regulação negativa dessas proteínas têm sido relacionadas em algumas neoplasias. O objetivo do presente estudo foi avaliar o perfil imuno-histoquímico das proteínas ING3 e ING4 em uma série de lesões odontogênicas epiteliais benignas. Métodos: A amostra foi composta por espécimes de 20 ceratocistos odontogênicos (CO), 20 ameloblastomas (AM) e 15 tumores odontogênicos adenomatoides (TOA). A imunoexpressão nuclear e citoplasmática de ING3 e ING4 foram avaliadas semi-quantitativamente nas células epiteliais das lesões odontogênicas, de acordo com a porcentagem de células imunomarcadas em cada caso. As análises descritivas e estatísticas foram computadas, e o valor de p estabelecido foi de 0,05. Resultados: Não foram encontradas diferenças estatisticamente significativas na imunoexpressão citoplasmática e nuclear de ING3 entre as lesões estudadas. Em contrapartida, os TOAs apresentaram maior marcação citoplasmática e nuclear de ING4 em comparação aos AMs (valor de p citoplasmático=0,01; valor de p nuclear <0,001) e COs (valor nuclear de p=0,007). Conclusão: A regulação negativa das proteínas ING3 e ING4 pode desempenhar um papel importante na iniciação e na progressão de lesões odontogênicas mais agressivas, como AMs e COs.


Subject(s)
Humans , Ameloblastoma , Odontogenic Cysts , Odontogenic Tumors , Homeodomain Proteins , Cell Cycle Proteins , Tumor Suppressor Proteins , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL